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Pinning stationary planar fronts in diffusion-convection-reaction systems
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This paper considers various strategies for controlling a stationary planar front solution, in a rectangular
domain with a diffusion-reaction distributed system, by pinning the solution to one or few points and using
actuators with the simplest possible spatial dependence. We review previous results obtained for one-
dimensional diffusion-reactiofwith or without convectiop systems, for which we applied two ap-
proaches: an approximate model reduction to a form that follows the front position while approximating the
front velocity, and linear stability analysis. We apply the same two approaches for the planar fronts. The
approximate model reduction allows us to analyze qualitatively various control strategies and to predict the
critical width below which the control mode of the one-dimensional system is sufficient. These results are
corroborated by linear analysis of a truncated model with the spectral methods representation, using concepts
of finite and infinite zeros of linear multidimensional systems.
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I. INTRODUCTION proach[15] as described below. The latter corroborates the
former, which yields rigorous results in a certain domain, but
This paper is part of a research effort aimed at developinghe latter approach is essential for other ranges of parameters
a control theory and its applications for one- and two-(see below.
dimensional planar distributed systems for which a certain The problem of finite-dimensional control of systems that
patterned state is advantageous or inevitable. Propagatirage described by 1D reaction-diffusion equations has been
fronts[1-5] and patterned states, composed of slow-movingattracting considerable attention. The dissipative nature of
fronts, separated by domains of moderate changes, mafie underlying PDE’s suggests that the long-term dynamics
emerge in several technologies including catalytic reactorgs low-dimensional. Several approaches for model reduction
[6—8], distillation process€®], flame propagation, and crys- have been suggeste@dee references ifl7]); recent ap-
tal growth [10]. Patterned states are also of importance inproaches were based on the central manifold theorem. This
many physiological systenjd1]. The research addressed the formal approach, as well as the linear analysis, does not sup-
following questions(a) What is the class of patterned statesport any qualitative understanding of the wave behavior of
that can be maintained by control in a reaction-convectionsuch a system to suggest efficient modes of control. The
diffusion system. We can classify most states either as steadypproach taken in our previous walk6] is different from
in time or homogeneous in space or both, or as steady bubhat applied in most studies: we employed an approximate
inhomogeneoute.g., front or multifronk states or as moving model reduction to a form that follows the front position
patterned state@.g., pulses, spiral wavesHere we are in- while approximating the front velocity.
terested mainly in stationary fronts; these are typically char- The purpose of this work is to summarize previous results
acterized by a small number of positive eigenvalues in thend extend the results to two-dimensional systems using a
uncontrolled one-dimensionélD) system and can be easily simple control procedure that pins the solution to a desired
controlled, while lateral instability of planar fronts may add set of points. We already implied that the system state is
more positive eigenvalues in a sufficiently wide systém. measured at few certain spots. The planar actuator can act
What control variables are able to provide the desired patglobally and be uniform in space or be space-dependent; the
terns? The answer to this question is specific to the physicdermer is easy to implemerte.g., by cooling the whole sys-
chemical characteristics of the system in questiohWhat  tem) but may be insufficient in a long or wide system. The
strategy of control should be applied? The answer to théatter approach, which is more technically challenging, is
latter is also technology-specific but the control should bevery efficient when the actuator spatial structure is an imprint
made as simple as possible in terms of the number of sensoo$ the desired state. In certain uncommon systémg., the
or actuators and the space dependence of the actuator. Wetential in electrochemical systenshe actuator can act
typically assume that sensors measure the local state whil@lmosj locally and in that case we can pin the solution to a
actuators may affect a narrow spot, a narrow strip in thedesired state. This possibility is not addressed here. The in-
plane, or the whole plane; in the limit we can refer to theseermediate case of a line actuator in a planar domain may be
actuators as point, line, and planar actuators. difficult to implement but may serve as an asymptotic analy-
We have addressed increasingly complex reactors fosis.
which possible patterns, in the absence of control, are In[14] we have analyzed the stability of one-dimensional
known. We have analyzed the control of one-dimensionapatterns in one- or two-variable reaction-diffusion systems,
reaction-diffusion [12,14,13 and reaction-diffusion- by analyzing the interaction between adjacent fronts and be-
convection[13,16 systems, using an approximate model-tween fronts and the boundaries in bounded systems. We
reduction approachi13,14,16 or a formal numerical ap- have used model reduction to a presentation that follows the
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front positions, while using approximate expressions for
front velocities in order to study various control modes in
such systems. These results were corroborated by few nu-
merical experiments. This approach is implemented here as
well.

A stationary single front or a pattern with fronts was
shown to be typically unstable due to the interaction between
fronts[14]. The two simplest control modes, global control z
(with a system-averaged sens@nd point-sensor control
(pinning), use a single sensor and a single space-independent
actuator and will arrest a front in a single-variable problem
since both control modes respond, in fact, to front position.
In a two-variable system incorporating a localized inhibitor,
in the domain of bistable kinetics, global control was shown
to stabilize a single front only in short systems while point-
sensor control can arrest such a front in any system size.
Neither of these control modes can stabilizerafnont pat-
tern (in either one- or two-variable systemaand that task
calls for a distributed actuator. A single space-dependent ac-
tuator, that is, spatially qualitatively similar to the patterned
set point, and which responds to the sum of deviations in
sensor readings, was shown to stabilize a pattern that ap-
proximately overlaps with the desired state. FIG. 1. (a) A typical 1D solution of the reaction-diffusion sys-

The stabilization of a front pattern in a homogeneous tutem[Eqg. (1)]; the instability stems from the anticlinal arrangement
bular reactor model by manipulating various reactor paramef y and 6. (b) Comparison of two approaches for the stability
eters, including fluid flow and feed conditions, was studied inanalysis of this system\=0,L =20,0.1<y=0.8) subject to con-
[13]. Point-sensor control by manipulating the heat-loss cotrol (2). The first and second leading eigenvalues of the Jacobian
efficient or the coolant temperature was shown to be effecatrices of the infinite-gain frozeéreduced moddlEq. (10a] are
tive when the temperature sensor is located close to the frofenoted by solid and broken lines while the eigenvalues of the

position. Global control based on a space-averaged sensbjite-gain closed-loop frozed-model \*=0y*=0) with gains
failed, as did several other strategies. of k=—1 and—20 are denoted by circles and points, respectively.

The structure of this work is the following. Results of ) ) .
control in a one-dimensional system are reviewed below ustWO réactor modelsand in the bistability features d?(y)

ing a polynomial kinetic model that was previously em- —0- The boundary conditions are the well-accepted Danck-
ployed in[14]. These results are extended in Sec. Il to p|a_werts c_:ond_mons, which reduce to no-flux conditions in the
nar systems using an approximate model reduction approadgtalytic wire. _ _ _

as well as a linear analysis, and they are verified by typical /e refer to single-variable systems as those with a fixed
simulations. In a future publication, we will apply this know- activity (6=1) while in a two-variables system the second
how to the stabilization of a planar front in a cylindrical Variable(6) is slow (¢ is the ratio of time scalgsand non-
annular reactor in which a first-order Arrhenius reaction oc-diffusing, and its kinetics is described by
curs. This will extend our previous one-dimensional study of

b)

leading eigenvalues

this problem[13]. 6:=Q(y,0). (1b)
The interaction of these two variables led to complex spa-
Il. ONE-DIMENSIONAL MODELS AND THEIR CONTROL tiotemporal patterns that were investigated extensively by us,

as well as by others, for the three situations described here:

In [16], we have analyzed three one-dimensional’’ " \ ; . .
reactors—the adiabatic reactor, the cross-flow reactor, anﬁhe'mUCh anq Nekhamkiri@0] ‘?’tUd'ed the adiabatic reac-
or, Nekhamkinaet al. [21] studied the cross-flow reactor.

the catalytic wire or ribbon—and showed that these thre%\‘ wudi fthe diffusi e ¢ hich
situations can be further simplified to a formal model of the umerous studies ot the difiusion-reaction system, whic

represent many physical systems including the catalytic wire,

form were summarized in monograpHs,19. SheintucH22] and
Vi— Yot VY, = P(Y,0,)), Middya et al. [23] studied the catalytic wire under global
control.
V(Ylo=Yi)=Yso, Yal =0, (1a We are interested in controlling a stationary frgetg.,

Fig. 1(@], the steady solution of Eq1). Initially, we limit
wherey is the state variabl@ypically the temperatupefis  the study to the case of a wide separation of time scales (
a nondiffusing(localized variable(catalytic activity thatis = <1), for which we can assume tltig(z) profile to be frozen
described below, and is the control variable. The three over short times. Modgll) exhibits front solutions that may
situations described above differ in the absence or presend®come unstable due to various interactions. Yet while ana-
of convection =0 in the catalytic wire while/#0 in the lytical results exist for a single front in unbounded systems

066213-2



PINNING STATIONARY PLANAR FRONTS IN . .. PHYSICAL REVIEW E566, 066213 (2002

with a polynomial source functiofi8,19, the behavior of a dz;

realistic boundedfinite-size system with several fronts, and — —; =¢(Zs)
arbitrary bistable kinetics, cannot be predicted analytically in
most cases. () ( ) Qy (ay Z-2) @®
— C — — —_— —
V=0\Ys Q() 9z . f S

A. Model reduction and linear analysis

The simplest control is based on a single sensor, located &nd the critical gain is readily approximated.
z* near the desired front position, and controlling one of the Example 1 For the simple cubi®(y,8,\)=—y3+y+¢

model parameteré\). The control law is of the form +X, Q(y,0)=e(—yy—0), andV=0, \* =0, for which an
analytical solution exists for a sufficiently long system, the
A=A HKY(ZF) —y* ], (2)  problem is reduced, after incorporating tQgy, 6) kinetics

into Eqg. (8 and noting thatdc/df=adcl/on, to k<-—
where y* is the set point. To find the necessary gain, weg{?cmaq: (9(0/)0)\>0). g Y

reduce th_e_ model to apresen_tation that follows t_he change i Testing the control in the limit of infinitgpositive or
front position, by approximating the front velocitg): We o4ty gain (k) amounts to pinning the solution so that
envision a low state on the left and a high one on the right
[Fig. (@], andc>0 implies expansion of the latter. Thus, y(Z*)=y*.
the front position is described by
4z The ability of this controller to stabilize the system can be
L —c(V,0,0)~V—Cy_g(O,\). 3) che.cked now by replacing the o_riginal problem with the fol-
dt lowing two problems that describe the system upstream and

downstream of the front:
The approximation above expresses the effect of convection

that can be shown to push the front in the flow direcfib. Vi— Y, VY, =P(y, 64(2),\*),
The front velocity is the resulting effect of convection and
front velocity in the absence of convection. We assume also Voloeo=VVlreo=Yin)s  Ylm=Y*; (9a)

that changes in9 are slow so thah=64(z) is the frozen

steady-state sqluuqn. The typical stea;d.yand QS profiles Vi—Vort VY, = P(Y, 042 N*), Yl =Y*, Y,l,- =0.

are presented in Fig.(8. Now the front is stationary for a (9b)

certainc* (0% ,\*)=V, that is, under conditions that the ki-

netic front counteract the convective force. We expand nowTo find the eigenvalues, linearize the problem within each
domain,

[04(Z)— 651

CV:o(es,)\):C*(a }\*)"‘(0')

a6 Vi~ Yot VY= Py(yz(z),ﬁs(z),)\*)ﬁ

Jc and use spectral methods to expang=y-—y
o (AN (4 =3a¢i(imz/L+2°%, wherey =y(z) is the steady solu-
tion, y=y(z,t) —y, is the deviation, and the wave number
to find the dependence of the front position on activity andandz’ are determined by the boundary conditions, to convert
on the control variable. Sincé is assumed to be frozen for the problem into a set of linear ODE’s.

the short perturbation times we consider, we can write Example 1aFor the simple kinetickandV=0) described
in example 1, the solution exhibits inversion symmetry

d0 around midpoint and it is sufficient to stugy—y,,=—y3
es(zf)—ag=(5) (2=29)= (,;Z> (Zi=2Z9, O 4y 4a(2) within the half-domain 6z<L/2, subject to
f Yi,=0=0, ¥|,—»,=0. Approximation of the linearized sys-
where the subscript denotes the front position. Moreover, tem by the spectral methods leads to a set of ODE's,
gradients iny and 6 are related by

az) Qploz/, Aijz—%5ij+<(_3yg+l)¢i,¢j>y

a;=Aa,

Similarly, the control effect can be expressed in a similar
form where we typically place the sens@*| at the desired ih,j=12,..., (103
steady front position4),

where 6;=1 wheni=j and §;;=0 otherwise. Theg;'s
A—K(y—y*) = — (& ) (Zi—20) 7) Eige_nfunctions are_calculated from the linearized problem
y=y iz fesh yt—yzz=(—3y§+1)y, which leads to eigenvalues and
eigenfunctions of the probleme¢,(z)=—N\¢(2), ¢,(0)
and the front velocity fon* =0, V=0, is described by =¢(L/12)=0,
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(2i—1)%72 —3y+¢&)2+\(2—3y+¢e)%/4—(2—27)e. Thus, for small
)\i:—LZ_- e the eigenvalues aren;=—2(1—1y)e/(2—3y+e), m,
=—(2—-3y+e)—m,.
_ Example 2 For V>0 andP(y,fs,\)=—(y>—1)(y—a)
bi(2)= icos( (21— 1)7TZ> i=1,2,... (10b + 65+ X\, we can still find an analytical solution for the front
JL L ’ o velocity. To render the front stationary we s&t —V/v2.
Such a source function admits an analytical steady-state so-
(see the Appendjx lution in an infinitely long system,y;=+1—ytank(z
For evaluatingA;; we can approximate the steady-state —z)\0.5(1—y)]. To study the effect of infinite gain, we
solution of PDE(1) [ —ys,~ — Y3+ Yys(1— 7)] with the ana-  need to solve the two domaitt8a) and (9b) (with the front
lytical results of a long system:y.=.1—ytanf(z in the center for the upstream and downstream sections,
~2)/0.5(1- y)] obtained by rescaling of the single- which become fon* =0, z* =L/2, andy* =0,
variable problem,—ys,~=—y:+Vs, YsdoL=0, which in _ a2 B
turn has a well-known solutio(sior an infinitely long system Ve Yz VY=~ (y = Dy=a) + 64(2),
ys=tanh@v2) [19]. By integrating Eq.(1039 with z;=L/2,

we obtain yz|z=O:V(y|z=0_yin)y y|z=L/2:0; (12a

2 Yi— Y2+ VY, = _(y2_ 1)(y—a)+042),

- 662 L fzt BL
T A R P Yl;-12=0. Yil,-=0. (12b)
1+ 08VIB 4o LV2B TkE Iineirized przoblem of th upstream sect_i(dri?a) Vi
+4v23 237 AN, -2 8a7an, ) |’ (113 —Y,,tVy,=(—3ys+1+2ay,)y leads to the eigenvalues
: : \; and eigenfunctiongp;(z) [adjoint eigenfunctions?(z)]
of the linear operatorp,(z) —V¢,(z) = — N\ ¢(2), subject to
_ 2R (1t 038 1ve 1 B0 Vo0, (L0,
e L 2B%+4q, ~8B%+4q, V2
14+e 08VIB {4 e LVIB Ni=02+ —,
> 2= , (11b 4
2B°+4q, 8B°+4q,
\Y
— 0.5v P
where B=\1—y, q=(i+j-1)27%L% and qg,=(i ¢i(2)=0,e777| codai2) + 5 =sin(aiz) |,
—j)?m?/L? (see the Appendix for derivation and the general
formula for Aj; ,Aj; whenzi#L/2). dX(2)=¢i(2)eVz (13
The comparison of two approaches, both assuming a

frozen+ profile either with an infinite or with a finite gain, is with ¢, i=1,2,... satisfying the equation &=

presented in Fig. (b): The leading eigenvalues of mati&  —vtg(o;L/2), ®i:<[COS@TiZ)+(V/20i)3in(ffi2)]2>_0'5 (see
(solid and broken lines, truncated ordidr=14) from Eq.  the Appendix for derivation
(10a, where we assumed an infinite gain and a fro#en-  The approximation of the linearized system by spectral

profile [Fig. (@], are compared for varioug values with  methods leads to the following linear system in the domain
those of the Jacobian matrix of the lumped model of PDE'QQ<z< | /2:

(1), again with a frozer¢ profile, controlled by A
=k[y(z*)—y*] [EQ. (2) with \* =0, y* = 0] with a gain of a;=Aa,
k=—1 (circles or k=—20 (points. Figure Xb) shows the

similarity of slow dynamics of these models when the gain is v? 5 a
sufficiently high (practically |k|>1). This supports the ad- Aij=—| ot ] 6T {(=3yst2ays+1) b)),
equacy of the reduced mod@) and its efficiency for analy-

sis of the closed-loop system with pinning control. ihj=1.2,.... (14

Both models demonstrate the inefficiency of pinning con-
trol for y>%. That results from the effect of on the phase The downstream section is described by @b and yields
plane: Fory<3$, the systemP=Q=0 exhibits bistability the same eigenvalues and eigenfunctions as in(E3).(see
(two stable statgsand the distributed system exhibits a front the Appendix.
that separates them. Foi>1 ande <1, the system exhibits Figure 2 compares the analysis of three approaches for
a unique unstable state surrounded by a limit cycle while fovarious y values (and L=20, V=0.1). The infinite-gain
£<y<1 the system exhibits bistability but the stability de- frozen-# approach £=0) yields a leading eigenvaluef
pends ore (see the detailed analysis[ib5]). To verify these  matrix A, Eq. (14)] denoted by a solid line. The finite-gain,
conditions, note that the steady states of the ODE systerftozen+# approach {* =0, y* =0, k= — 20, truncation order
yi=—Yy3+y+0, 6,=e(—yy—0) arey;=+1—y and the N=14) yields the leading eigenvalue denoted by points, and
corresponding eigenvalues are approximately,=—(2  the full model that accounts for varyirg)(e =0.1) yields the
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0.5 : T r 1

y(L/2,r)
o
'|c'|;

leading eigenvalue

0 0.2 04 0.6 0.8

Y - 0 ""'l' b)
. . o,
FIG. 2. Comparison of three approaches for the stability analy- ) ::,',l,:',
sis of the 1D reaction-convection-diffusion systdiaqg. (1), V
=0.11 =20,0.1=< y<0.8] subject to contral2): The leading eigen- ;(1) 5
value of the Jacobian matrix of the infinite-gain frozémeduced 20

model [Eq. (14)] is denoted by the solid line while the leading
eigenvalue of the finite-gain closed-loop frozémodel is denoted
by points and that of the full§=0.1) model §*=0y*=0k
=—20) is marked by a dashed-dotted line. FIG. 3. Time evolution of the front ling(L/2r) (a) and of the

planar front solution(b) of the closed-loop systertl5) subject to
dashed-dotted line: As in Fig(ld), the frozend models with  the control law\=—2Qy(z*,r*,t)—ys(z*,r*)] with a single
finite or infinite k yield similar results. The full model pre- space-independent actuator located at the domain cexiterl(/2,
dicts that the largest eigenvalue of the short system is nega* =R/2; L=20,R=7, ¢=0.1, andy=0.45).

tive for y<<0.6 as expected from the analysis of the homo- . . .
geneous statéy<(2+¢)/3, see example (b)]. All these undergo symmetry breaklng so that in part of it the upper
models demonstrate that the pinning control is effective fortate expands while in the other part the lower state propa-
y<y* (V) (Fig. 2. gates(see Fig. 3.

We begin the analysis with the cage—~0 so thaté
= 0,(z) can be assumed to be the frozen steady state. The
velocity of a planar front now depends on its curvature and
with K<1 it is [19]
The structure of this section is as follows: Model reduc-

I1l. PINNING PLANAR FRONTS

tion and various control strategies are analyzed in Sec. Il A. c=c.—DK, K=f"/(1+f'?)%, (16)
::;?lrl gnalyss and control design are outlined in Secs. i BWherec is the velocity in the direction perpendicular to the

front, which is described by a certain curidg—Z,=f(r),
andc., is the front velocity of a planar front in a large sys-

A. Model reduction and control strategies tem; D is the diffusivity, which in our case is scaled into the
Consider a reaction-diffusion problem in tker) rectan-  length scalgi.e.,D=1).
gular domain of length. and widthR (e.g., see Fig. 3 Now, consider perturbations of stationary fronts in the ra-
dial (r) direction and various control approaches.
Ve~ Yo Yo = — Y3y + 0+, (159 (i) Line actuator If we pin the whole front at the front
line Z;(r)=L/2 toy=y*, then the problem is reduced to its
Oi=e(—yy—0) (15  one-dimensional analog as described above. That may not be
a practical solution and we should look for pinning the front
subject to no-flux boundary conditions: at few points along the front line.
(i) Point actuator If we place the sensor at the center of
YA0,r)=0, y,(L,r)=0, the domairy* =y(L/2,R/2) and use a simple uniform planar
actuatorA =k(y—y*), then for small deviation&he curva-
y(2,0)=0, y.(z,R)=0. (150 ture for small deviations i&=f") we have
dz; df(r)
We want to stabilize a 1D front in the middige., atz BT =c(f(r))
=L/2) of this 2D domain. One instability stems from the
same reason as in the 1D problem, namely the anticlinal Qy[dc)\ [ay a*f ac [y R
arrangement_of the_ front and the slow variapfég. 1(a)]_. =- Q_e(%) (E) r-— i X(E) (E)
However, while a single actuator can arrest the front in the f f f
1D system, here the front, in a sufficiently wide system, may (173
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(iii) Finding critical R With a sufficiently large gain, we 7
can pin the front at its center but that may not be sufficient in A=\*+ kE [y(L/2,)rg,t)=y5 lbg(Z,1), (20
a wide system. We should consider fronts that admit no-flux d=1

boundary conditions, i.e.f~cosfmt/R)+6, n=1.2,..., ok L
where d is a certain constant value. The most unstable per\_/vherey(LIZ,rd 1)=yg are deviations of the sensors from

turbation is that witi= 1, and therefore the set pointsyg =y*(L/2rq); #q(z,r) are some space-
dependent functions that may imitate the eigenfunctions. For
dz, df(r) Qy[ac\ [ay 92f design of contro(20) we apply below the general approach
airTan Tzc(f(r))z — Q_(%) —) )— based on Liapunov’s linearization method and the advanced
0 f linear system theory24]. This approach uses a linearized
(17b lumping model of PDE’s and is best suitable for a systematic
computer-aided search of the regulator form. Moreover, the
method may be applied to PDE{4) without the analysis
limiting to the time-scale separation and to the forms of per-
turbation. We will seek contrd0) with the simplest space-
independent or space-dependent actuator functigz,r).
and we find that forR larger than a critical value this ap-  Below we consider in detail the theoretical basis for the

proach cannot assure the stability of this state. For examplélesign of linear feedback contr20).

the front velocityc,, of Eq. (158 with the frozen profiled

=04(2) is C,=(y,.+Yy_—2y;) [19], wherey, , y_, y; are B. Linear analysis

roots of —y3+y=0. Calculatingco? at the front pos!tion as Linearizing system(15) for A=0 aroundy.=vy«(zr),
C.=3(0s+\)/V2 (see details in[14]) we obtain ¢y ¢ =g (2 ), the steady-state solution, we find

=3H2. The derivativey,; may be evaluated by differentia-

tion of the analytical steady-state solutiony, Vi~ Yo Yer = (—3y2+ 1)y+ 6+, (219
=J1—ytanH(z=Z)y(1—y)/2] asy,;=(1—y)/v2. Then
the leading eigenvalue of the probletib with y=0.45 is
m;=0.37— (7/R)? from which we calculate the critical

ar?

0Zf

Setting f~a,(t)coshnr/R)+ 5, we can approximate the ei-
genvalues of this problem as

My=YCyiYo1— (NTIR)%,  Cyur=(cl30); (18

6,=—eyy—e0. (21b

We use the Galerkin approach for lumping these equations
Re=5.16. with X from Eq. (20) by expanding the deviationgz,r,t),

w ‘ o o
This R, is a good approximation for the value obtained pe-/(Z1D), andy(Z*.1q, ) =y(z".rq,1) =ys(z".1q) as

low by other methods for the full PDE®L5) with £ =0.1.
(iv) Two actuatorsNow, for R>R,, we have to turn to a V(zr,)=2 agt) ge(z1),

control based on two sensors and two actuators: From the €
nature of the unstable perturbations which admit no-flux
boundary conditions, we should impose a control that in the V(Z* rg, )= as(t) de(Z* .1 g),
model reduction appears in the form aus(/R)+ 6, wheres e
is a certain constant value; i.e., in the original system the
simplest two-actuator control is of the form 0(2,t)=2€ be(t) bel2i1), 22)
A=Ky +kyy, cog @r/R), (19

wherez* =L/2. The orthonormal functiong.(z,r) are the

wherey;=y(r;) is measured at the pointe 2,r;). ControlA eigenfunctions of the problem,
in Eq. (19) is determined from the perturbations pht two

sensors located at.(2,r;), (L/2,r,). This control responds G, AZ,0)+ P (z,r)=—Np(z,1),
to deviations in the front position becausg(L/2;)
=-—1f(ry), Wheref(ri):(Zf—ZS)|ri, i=1,2. To study the ef- ¢, 0r)=,(L,r)=¢,(2,00=¢,(z,R)=0 (23

fectiveness of this actuator, substitute con{t®) into Eq. . )

(173 to find a term like fc/dN)(ay/az)(A—\*) instead of  With the eigenvalues
kf(R/2). We obtain that with a certaky , the eigenvalues of
this problem are approximated by,= ycCyy,i— (N7/R)?
—kyy,. They can be shifted to the negative domain by a
sufficiently large gairk,.

(v) Many actuators Obviously, with increasing width of
the system we will have to employ more sensors and more
actuators. In that case we suggest using several sensors lo- beiif)(Z1)=
cated along the front at preset positiorsrj=(L/2r), d JLR
=1,...,p and apply a general feedback control law of the
form e=e(ij)=12,..., (24b

(249

Ne(ij) =

(-7 (-1 ,
1z TR |7

and the eigenfunctions

(i—-Lymz  (j—1)ar
COSs COSs R ,
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wherep=1 wheni=j=1, p=2 wheni, j>1, andp=v2
wheni=1,j>1 orj=1,i>1 [see the Appendix for a deri-
vation of Eq.(24)].

Approximation by spectral methods of Eq213a), (21b),
and (20) with A* =0 and set pointyy =ys(z*,rq) leads to
the infinite system of ODE's,

8e= — Nelot ; Jorm+ be

7 L (R
+kdzl fo Jo l//d(Z,r)Z ar ik (Z2*,rg)

X deay(z,r)dz dr, (29
be=—e(yae+be), (26)
where
L (R 2

Jem= JO fo (_3ys+1)¢m(ij)¢e(kl)dz dr,
em=1.2,.... (27

Let us evaluate the last sum in E&5). Denoting
hai=d:(2* 1 g), (28)

we can present a term of this sum as

L (R
J J Ya(Z,1) ardr k) (Z* 1 g) Peckiy(z,r)dz dr
0Jo T

L (R
:J f ba(Z,1) pery(z,r)dz drY, achg;
0Jo T

and rewrite Eq(25) with the notation

L (R
Bed= fo Jo Ya(Z,1) beqny(z,r)dz dr (29
as follows:
n
a.= _)\eae"'Em: Jem@mt bet kd§=:l IBedEf: ahgs,
ef=12,.... (30

Closed-loop ODE'Y30) and (26) may be presented in the
usual vector-matrix form

—A+J I
—evl

a
b

ﬂ+4g[H oﬂﬂ

or as an open-loop system witirdimensional inputv and
outputw,

—el

—A+J I
—eyl

a
b

a
b

B
O

—+

31

U’
—el

PHYSICAL REVIEW E566, 066213 (2002

TABLE I. Evolution of the truncated ordeN versusR (L
=20).

R 1,2 3 4.5 6 7 8 9 10
N 9 14 16 22 23 27 29 30
w=Ha (32

closed by a high gain output feedback control
v=KI,w, (33

where a(t)=[a.], b(t)=[b.] are the infinite-dimensional
vectors €=1,2,...); v and w are finite-dimensional
n-vectors, the matriy3=[ B.4] hasy infinite-dimension col-
umns €=1,2,...d=1,...,7) and the matrixH=[hy]

hasy infinite-dimension rowsd=1, ... »,f=1.2,...);l,
is an unity »X% matrix; A=diaghi,\, ...), |
=diag(1,1...), J=[Jeml, em=1,2,... are infinite-

dimensional matrices.

Let us study control syster81) with output (32). The
problem can be stated as follows.

Problem For the linearized infinite-dimensional ODE
system(31) and (32) it is necessary to find &igh gain (k)
output feedback contrdi33), constructed by using input
and outputw of minimal dimensions, such that the closed-
loop system be asymptotically stable.

The design of the control law uses a finite-dimensional
truncated version of ODES1) and(32). The evaluation of
orderN of the truncated ODE system consists of two main
stages: First we evaluatéd [ M =max(,j), Egs. (248 and
(24b)] which defines the minimal threshold for basic eigen-
functions(22) in the z andr directions: For assigned value
M=23,... wecalculatem=M?2 eigenvaluesh ;) [EQ.
(243] and eigenfunctions ¢¢ij)(z,r) [Eq. (24b], e
=1,2,...m of the linear operator of PDE(L5), order the
eigenfunctions in increasing values of the relateg;,, and
then calculate the leading eigenvalues of the>x22m dy-
namics matrices of Eq:31). M coincides with the minimal
one that ensures the convergence of the leading eigenvalues
with desirable accuracy. In the next stage we need to esti-
mate the truncated ordéd as the minimal value o€ [the
number of ordered eigenfunctionsj(z,r) for assigned
M] which guarantees the desired accuracy of the approxima-
tion. Analysis of the leading eigenvalues for different system
width R showed thatVl ~ 10 is sufficient forN evaluations
for the conditions defined below. The results of evolutidn

TABLE II. Number of unstable eigenvalues in an open-loop
system for differenR (L=20).

Number of
R positive eigenvalues
0<R=<5.6 2
5.6<R=<10 4
R>10 =6
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FIG. 4. The stability analysis of an open loé@® and a closed
loop system with onéb) or two (c) actuators: (a) The effect of the
domain width(R) on the leading eigenvaluds\; (asterisk§ \,
(pluses, and real part oh3,\, (circles] of the open-loop system
[truncated ODE systerf81)]; (b) the effect of the domain width on
the leading eigenvaludseal part, denoted by circlesf the closed-
loop systenjtruncated ODE systeif81) and(32)] with a high gain
(k=—20) control (34) using a uniform actuator with a center-
positioned sensaiother parameters as in Fig. 18,=10); (c) effect
of two actuators controlEq. (35), z*=L/2r,;=R/2r,=0, 7<R

PHYSICAL REVIEW E 66, 066213 (2002

linear stability of the planar front. We start with a single
simple (space-independenactuator with a centrally posi-
tioned sensor. Assuming intuitively, as suggested by the
model-reduction approach, that it is indeed the simplest sen-
sor. When that fails in wide domains we demonstrate the
methodological design of a two-actuator control. The pro-
posed approach of control design uses the concepts of finite
[24—26 and infinite zero$27] of a linear multidimensional
system(see[ 28,29 for details.

Simple single actuator controWWe start by analyzing the
effectiveness of the simplest control law: a single space-
independent actuatdi.e., Eq. (209 with =1, 4(z,r)
= 1]

N=KLy(z*,r;,0)=yg 1, (34)
where y¥ =y4(z*,r;).! The spectral representation of the
closed-loop PDE'Y153, (15b), and (34) is a single-input
single-output ODE'Y31) and (32) with a column vectoiB
=[B11,0,0...1" (B11=VLR) and a row vectorH=h
=[hq1,hqo, .. .]. We begin the analysis for an actuator that
is situated at the domain cente*(=L/2,r;=R/2). The evo-
lution of the leading eigenvalues with changifgin an
open-loop and closed-loogk€& —20) system showsFigs.
4(a) and 4b)] that the high feedback influences only the two
most positive leading eigenvalues(~0.328\,~0) of the
open-loop system while the next-leadif@nd complex ei-
genvalues\;,\, possess negative real parts fox R<<5.6
and positive real parts fdR=5.6. The critical width for the
effectiveness of a simple actuatBg,~5.5 is in fair agree-
ment with the model reduction predictiqsee Sec. Il A.
The transition with increasin® is through a Hopf bifurca-
tion, and simulations of the original systefb) with control
(34) verify this by emergence of damped and undamped os-
cillations for R below and above this valud-igs. 5a) and
5(b); R=5.2,5.6]. Figure 5 presents cross sections of the
solution atL/2 (first column, temporal behavior of the cen-
ter (L/2,R/2) position(second column and the gray-scale
plots of the state aR/2 (third column andL/2 (fourth col-
umn).

=<10] on leading eigenvalues of the closed-loop truncated ODE Two-actuator contrallt follows from Eq.(20) that while

system(31) and(32). Other parameters are as in Fig. 3.

versusR for assignedM =10 (Table I, L=20, £=0.1, y
=0.45) show thaiN grows about linearly wittR.

The stability analysis of the open-loop system fdr
=10 shows two real unstable eigenvalues of Eg§l)
(~0.328,~0), which are identical to those of a narrow sys-

the form of the output matriH is defined by the sensors
number » and their positiondEq. (28)], the form of the
actuator functiongyy(z,r) influences the structure of the ma-
trix B [Eq. (29)]. Therefore, the general strategy of the
method is based on assigning=1,2, ... preset actuator
positions g,r)=(L/2ry), d=1,...,p, by successively
adding new corresponding rows in the< N output matrixH

tem and two complex eigenvalues with a real part that beand searching for the form of additional rows of the< »

comes positive foR=5.6[Fig. 4(a), parameters as in Table

matrix 8 such that the neyB ensures stability of the closed-

I]. Recall that this was approximated by the critical valueloop ODE’s(31),(32) with a high gain contro(33). The sta-

predicted in Eq.18). The number of unstable eigenvalues
increases foR>10 (see Table I\.

C. Control design based on the linearized lumped model

Control design implies the determination of the minimal

bility analysis may be fulfilled by directly calculating the
leading eigenvalues of the above-mentioned closed-loop sys-
tem versus gain coefficiekt But we use the advanced linear
system theory to replace this procedure by the analysis of

number of actuators to be employed, their spatial form, and *we propose that the set poigt: coincides with the desired
the location of the corresponding sensors that will assure theteady-state valug? of this problem.
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FIG. 5. (a),(b) Testing the effectiveness of contr84) with one space-independent actuator for systéB) of different widths: R
=5.2 (a), R=5.6 (b). The figures present initigdashed lingand final(solid line) y profiles in ther direction(column 1, insets are initial
and final profiles in the direction), the deviation ofy from y, in the center pointl({/2,R/2) (column 2, and gray-scale plots in the planes
(t, 2 atr=R/2 and in(t, r) atz=L/2 (columns 3 and ¥ Initial perturbation in the direction is—0.01 cos{r/R); the sensor is positioned
at the centerl(=20,=0.1,y=0.45k= —20).

finite zeros and infinite zeros of open-loop syst&t) and  at positions ¢* =L/2r,), (z*=L/2r,) and calculate the 2
(32 applying the known property of a closed-loop linear XN matrix H by formula (28). Then evaluating the system
system with a high gain feedba¢gee[24,27)): as the feed- zeros of series systen81) and (32) with output matrixH
back gain increases towards infinity, part of the closed-loofand differentNx 2 matrices

eigenvalues remains finite and approaches the position which

is referred to as the finite system zeros while the remainder 1WLR 0
are located at the points at infinity and are known as infinite

zeros. Therefore, we propose to seek the suitable maiix P
the repeating calculations of the finite system zeros of ope
loop ODE’s (31) and(32) with different input matrices and
finding one that ensures that the leading finite system zer

are negative. Then we need to rearrange the sensor positi . .
in the r direction so that the infinite zeros tend to infinity %Iementsﬁlﬁé 0, B2#0 and the corresponding contr@)

along asymptotes with a negative real axis angle. This i as one space-independent and one space-dependent actua-

o -7
, 36
Bz P23 (30

Nve may findB with the minimal number of nonzero elements
d82i which ensures the stability of the appropriate closed-loop
stem with a high gain. This matrig contains nonzero

" . . or. For example, for PDE'$15) (L=20, y=0.45,£=0.1,
guaranteed if the eigenvalues of thex » matrix HB have R=7, r,=R/2, r,=R) the matrix 8 with B,,#0 conforms

to the ODE’s having leading zeros with negative real parts

(—0.1029. This B,, corresponds to the fourth eigenfunction

¢4~ cos@t/R) in the ordered series of eigenfunctions.
Consequently contrg35) becomes

real positive part$27].

For simplification of the search of the matristructure,
we may assign the eigenfunctioi®@4b) as actuator func-
tions, i.e.,iq(z,r)~ ¢po(z,r), e=1,2, ... ;from the relation
between the form of the actuatgiy(z,r) functions and the
structure of the matriy3 [see Eq(29)], it follows that every
dth column of the matrix8 will contain only nonzero ele-
ment Bey-

Apply control of the form

2

x=k21 [y(Z*,rg,t)—yZ 1a(z,r)

(35

with one space-independent actuagr(z,r)=1] and an-
other space-dependent ong;(z,r)~ ¢o(z,r), that is, an
eigenfunction from serie@2) ordered in an increasing order
of the appropriate eigenvaluéset us introduce two sensors

2The first six ordered eigenfunctions for PDEE5) with L= 20,
R=7, N=23 are ¢,~1,¢p,~cos@z/L), ¢3~cos(2rzL), ¢,
~cos(@r/R), ¢ps~cos(3rZL), pg~ cosmz/L)cos@r/R).

N=K{[y(z*,ry,t) —ys(z*,r )]+ [y(z*,r2,t)

—ys(Z".rp)Jcog wr/R)},  ZF= (37

5
Then we need to rearrange the sensor position i thieec-
tion so that the eigenvalues of thex2 matrixH g are posi-
tive. As was noted before, this guarantees that the infinite
zeros tend to infinity along asymptotes with a negative real
axis angle. For our example, we need to uskcations that
satisfy the inequality ;>r,. The relevant matrid 8 with
r{=R andr,=R/2 has eigenvalues 0.081D.8761. When
r,<r,, the closed-loop high gain ODEI81)—(33) are un-
stable: the matrid 8 has eigenvalues of 0.11610.1226.

The successful application of contr@7) with r;=R and
r,=R/2 is demonstrated in Figs(® and b). Further com-
putation shows that it is able to stabilize the system With
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FIG. 6. (a),(b) Testing the effectiveness of contr@7) with one state-independent and one state-dependent actuator for $¢Sjeoh
width R=7>R,,. The figure presents initigdashed lingand final(solid line) y profiles in ther direction(column 1, insets are initial and
final profiles in thez direction, deviation ofy from y at point (L/2,r;) (column 2, gray-scale plot of in the planest, 2) atr =R/2 (column
3), and(t, r) atz=L/2 (column 4. Initial perturbation in the direction is 0.01 costr/R) in (a) and —0.01 sin@r/R) in (b); sensor positions
are atz* =L/2, r;=R, andr,=R/2. Other parameters as in Fig. 5.

<10 [Fig. 4(c)]. Note that the structure of actuat(87) co- der the conditions studied the system exhibits a rotating pat-
incides with control law(19), which was derived from the tern, but the incorporation of a simple pinning control, based
reduced model. on a sensor that measures the temperature at the front and an
We can use a similar approach for three or more actuatorsictuator that affects the feed concentration or the fluid veloc-
ity, is able to largely stabilize the front.

IV. CONCLUSION
e . ) ACKNOWLEDGMENTS
The stabilization of planar stationary fronts in a two-

dimensional rectangular domain, in which a diffusion-  This work was supported by the U.S.—lIsrael Binational
reaction systems occurs, is studied using a two-variabl&cience Foundation. M.S. acknowledges the Minerva Center
model incorporating a fast and diffusing activator with ap-0f Nonlinear Dynamics for support. Y.S. and O.N. are par-
proximate (polynomia) kinetics, for which some analytical tially supported by the Center for Absorption in Science,
results are available, and a slow and localized inhibitor. wéVinistry of Immigrant Absorption, State of Israel.

consider the simplest control strategy based on sensors

placed at the front line position and measured deviations APPENDIX

from a local state, and actuators that are spatially uniform or

space-dependent. Large gains imply pinning the solution to 1. Derivation of Egs. (10) and (13)

one or few points. The general solution of the problem
We apply two approaches for control design: an approxi- _
mate model reduction to a form that follows the front posi- $242)=—N¢(2) (A1)

tion while approximating the front velocity and assuming

wide separation of activator-inhibitor time scales, and lineaVith the nonflux b.c. is¢i(z) =B cos(/Aiz) with \;=(2i

stability analysis. The same approaches were previously ap- 1)"m*/L". The coefficientsB; are chosen so that eigen

plied by us for analysis of one-dimensional systems. Thdunctions be orthonormal; thus = 2/L.
approximate model reduction allows us to qualitatively ana- 1€ €igenvalue problem
lyze various control strategies and to predict the critical
xidth below which the contr%l mode of thre) one-dimensional #22 V#2= "¢, $2D)]z=0=V4(0),  ¢(D)]z-12=0
system is sufficient. These results are corroborated by linear
analysis of a truncated model with spectral methods repreis a non-self-adjoint problem with adjoint eigenfunctions
sentation, using concepts of finite and infinite zeros of Iineal'(ls?(z):e—Vz¢i(z)_ We use the substitution
multidimensional systems. We present a systematic control
design that determines the number of required sensors and di(2)=e"Vzw(2) (A3)
actuators, their position, and their form.

In a future presentation we will show how this know-how and obtain the self-adjoint eigenvalue problem
can be implemented to problems with convection. To that
end we study the stabilization of planar fronts in a cylindrical
annular reactor in which an oscillatory reaction occurs. Un-

V2

Wizz:<)\i_ Z)Wizon
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Wi,(2)],-0=VW;(0)/2, 20;=—Vtg(oiL/2). As a result, we obtain the general solu-
tion of Eq. (A4) as w;(z) =B cos;2)+(V/20;)sin(o;2)].
W;(2)],= »=0. (A4) Substitutingw;(z) in Eqg. (A3) and choosind; to make the
eigenfunctions orthonormal to adjoint eigenfunctions, we ob-
The general solution of proble@4) is tain Eq.(13).
wi(2)=A; sin(0;2) + B; cod 0;2), 2. Derivation of Egs. (118 and (11b)

whereo?=\;— V?/4. Application of the boundary conditions From the orthonormal property @f; , we can expresa;;
yields A;=—B;ctg(o;L/2), where o; obeys the equation with 8=+/1— v as follows:

L/2 L/2 L/2 :8
Aiizf (—3y§+1)¢i2dz=f —3ylpfdz+ 1=f —3B2%tantt| — (z—z) | p7dz+ 1.

0 0 0 V2
Sincedbiz(z)=4[co§(qz)]/L=2[1+cos(2:|z)]/L, g=(2i—1)w/L, we can rewrite the above expression as

6 2
a1 O

22i—1)mwz
L —( )™ dz

L/2 B L/2 i
fo tanr?(‘z(z—zf))dﬁfo tanh’-(E(z—zf))cos 2

The first integral in Eq(A5) is calculated exactly. For evaluating the second integral, we use the approximate expression for
tanh: tanty=sgnf){1—2 exd —2abqy)]} [30], which fory=z—2z;<0 takes the simple form

(A5)

tanhz—z)=—1+2exg2(z—z)]. (AB)

Substituting Eq(A6), we can rewrite the last integral in EGA5) in the form

fuz —4ex;{2—B(z—zf) 2(2i—1)7z
0 V2

cos————dz (A7)

+1 L

4
+4 ex;(%(z— Zs)

and calculatey;; ,

Ai=1-—

L

682 (L V2 h,B(L/Z—Zf) )
AL 282+ 4N, 882+ 4n,

Bz; e\/ZB( —zg+Li2) e—ﬁﬂzf ezxf2,8(—27+ Li2) e—ZViﬁz,
+tanh— | +4v2 )
V2

(A8)

From the orthonormal property @f; ,¢; (i#j), we have

Li2 , e Li2 B
Aij:fo (=3ys+1)¢ipdz= fo —3ysdipdz= fo —3p% tantf 5(2_20 diddz.
Since
2/ 2i+j-Dmz  2(i—j)mz
¢i(z)¢j(2):E(COS ( JL ™%t cos LJ 77)

we can then rewritd\; as

6,3°
L

L/2 B 27z L/2 B 27wz(i—])
f tanf?(ﬁ(z—zf))cosT(lﬂ—1)dz+f0 tanh’-(g(z—zf))cosfdzl.

Aij= 0

For evaluating the integrals in the above expression we also useAB). With the notationg,= (i +j—1)%?72/L2, q,=(i
—j)??/L?, we obtain
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24\/2,33 et/iﬁ(—zf+L/2) + e—\/i,Bzf e2\/§,8(—z,+ L/2)+ e—2\/2,82f e\/iﬁ(—zf+L/2) + e—x/iﬁzf eZ\/iB(—zf+L/2) +e 2V2Bz¢

=TT 2F7aq, 0 8prAe, | 2@TAq,  © 8p+ag
(A9)
Formulas(11a@ and(11b) follow from Egs.(A8) and(A9) with z;=L/2.
3. Derivation of Eq. (24)
Consider the general solution of the problem
b2 AZ1)+ i (Z,1)=—Np(Z,1) (A10)
with the no-flux b.c.,
$,(0,1)=¢,(L,r)=0, ¢(z,0)=¢(z,R)=0. (A11)
We use a separation of variables(z,r)=w¥(z){(r), to obtain two one-dimensional Sturm-Liuvill problems,
Y, (2)=—u¥(2), q}z|z:0:Or q’z|z:L:O; (A12)
Qu(r)=—yQ(r), y=k—pu, Qr|r=O:01 Qr|r=R:0- (AL13)
Problems(A12) and (A13) are similar to problems froml5] and have solutions for
(i—1)%72 Bi (i—-1)mz ,
W=z Vi(z)= ﬁcos?, B;=1, B;=v2, i>1, (Al4a
B oL L St L. PR S Al4b
NTTRE j(r)_\/_ﬁcosT’ 1=1, Bj=v2, j>1, ( )
where i,j=1,2,... . Using the equalityy;=\—pu; and substituting the eigenfunctions from E(A14) to ¢(zr)

=WV (2)Q(r), we obtain Eq(24).
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