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Pinning stationary planar fronts in diffusion-convection-reaction systems

Moshe Sheintuch, Yelena Smagina, and Olga Nekhamkina
Department of Chemical Engineering, Technion, Haifa 32000, Israel

~Received 21 August 2002; published 20 December 2002!

This paper considers various strategies for controlling a stationary planar front solution, in a rectangular
domain with a diffusion-reaction distributed system, by pinning the solution to one or few points and using
actuators with the simplest possible spatial dependence. We review previous results obtained for one-
dimensional diffusion-reaction~with or without convection! systems, for which we applied two ap-
proaches: an approximate model reduction to a form that follows the front position while approximating the
front velocity, and linear stability analysis. We apply the same two approaches for the planar fronts. The
approximate model reduction allows us to analyze qualitatively various control strategies and to predict the
critical width below which the control mode of the one-dimensional system is sufficient. These results are
corroborated by linear analysis of a truncated model with the spectral methods representation, using concepts
of finite and infinite zeros of linear multidimensional systems.
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I. INTRODUCTION

This paper is part of a research effort aimed at develop
a control theory and its applications for one- and tw
dimensional planar distributed systems for which a cert
patterned state is advantageous or inevitable. Propaga
fronts @1–5# and patterned states, composed of slow-mov
fronts, separated by domains of moderate changes,
emerge in several technologies including catalytic reac
@6–8#, distillation processes@9#, flame propagation, and crys
tal growth @10#. Patterned states are also of importance
many physiological systems@11#. The research addressed t
following questions.~a! What is the class of patterned stat
that can be maintained by control in a reaction-convecti
diffusion system. We can classify most states either as ste
in time or homogeneous in space or both, or as steady
inhomogeneous~e.g., front or multifront! states or as moving
patterned states~e.g., pulses, spiral waves!. Here we are in-
terested mainly in stationary fronts; these are typically ch
acterized by a small number of positive eigenvalues in
uncontrolled one-dimensional~1D! system and can be easi
controlled, while lateral instability of planar fronts may ad
more positive eigenvalues in a sufficiently wide system.~b!
What control variables are able to provide the desired p
terns? The answer to this question is specific to the phys
chemical characteristics of the system in question.~c! What
strategy of control should be applied? The answer to
latter is also technology-specific but the control should
made as simple as possible in terms of the number of sen
or actuators and the space dependence of the actuato
typically assume that sensors measure the local state w
actuators may affect a narrow spot, a narrow strip in
plane, or the whole plane; in the limit we can refer to the
actuators as point, line, and planar actuators.

We have addressed increasingly complex reactors
which possible patterns, in the absence of control,
known. We have analyzed the control of one-dimensio
reaction-diffusion @12,14,15# and reaction-diffusion-
convection@13,16# systems, using an approximate mod
reduction approach@13,14,16# or a formal numerical ap-
1063-651X/2002/66~6!/066213~13!/$20.00 66 0662
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proach@15# as described below. The latter corroborates
former, which yields rigorous results in a certain domain, b
the latter approach is essential for other ranges of parame
~see below!.

The problem of finite-dimensional control of systems th
are described by 1D reaction-diffusion equations has b
attracting considerable attention. The dissipative nature
the underlying PDE’s suggests that the long-term dynam
is low-dimensional. Several approaches for model reduc
have been suggested~see references in@17#!; recent ap-
proaches were based on the central manifold theorem.
formal approach, as well as the linear analysis, does not
port any qualitative understanding of the wave behavior
such a system to suggest efficient modes of control. T
approach taken in our previous work@16# is different from
that applied in most studies: we employed an approxim
model reduction to a form that follows the front positio
while approximating the front velocity.

The purpose of this work is to summarize previous resu
and extend the results to two-dimensional systems usin
simple control procedure that pins the solution to a desi
set of points. We already implied that the system state
measured at few certain spots. The planar actuator can
globally and be uniform in space or be space-dependent;
former is easy to implement~e.g., by cooling the whole sys
tem! but may be insufficient in a long or wide system. Th
latter approach, which is more technically challenging,
very efficient when the actuator spatial structure is an imp
of the desired state. In certain uncommon systems~e.g., the
potential in electrochemical systems!, the actuator can ac
~almost! locally and in that case we can pin the solution to
desired state. This possibility is not addressed here. The
termediate case of a line actuator in a planar domain ma
difficult to implement but may serve as an asymptotic ana
sis.

In @14# we have analyzed the stability of one-dimension
patterns in one- or two-variable reaction-diffusion system
by analyzing the interaction between adjacent fronts and
tween fronts and the boundaries in bounded systems.
have used model reduction to a presentation that follows
©2002 The American Physical Society13-1
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front positions, while using approximate expressions
front velocities in order to study various control modes
such systems. These results were corroborated by few
merical experiments. This approach is implemented her
well.

A stationary single front or a pattern withn fronts was
shown to be typically unstable due to the interaction betw
fronts @14#. The two simplest control modes, global contr
~with a system-averaged sensor! and point-sensor contro
~pinning!, use a single sensor and a single space-indepen
actuator and will arrest a front in a single-variable proble
since both control modes respond, in fact, to front positi
In a two-variable system incorporating a localized inhibit
in the domain of bistable kinetics, global control was sho
to stabilize a single front only in short systems while poi
sensor control can arrest such a front in any system s
Neither of these control modes can stabilize ann-front pat-
tern ~in either one- or two-variable systems!, and that task
calls for a distributed actuator. A single space-dependent
tuator, that is, spatially qualitatively similar to the pattern
set point, and which responds to the sum of deviations
sensor readings, was shown to stabilize a pattern that
proximately overlaps with the desired state.

The stabilization of a front pattern in a homogeneous
bular reactor model by manipulating various reactor para
eters, including fluid flow and feed conditions, was studied
@13#. Point-sensor control by manipulating the heat-loss
efficient or the coolant temperature was shown to be ef
tive when the temperature sensor is located close to the f
position. Global control based on a space-averaged se
failed, as did several other strategies.

The structure of this work is the following. Results
control in a one-dimensional system are reviewed below
ing a polynomial kinetic model that was previously em
ployed in@14#. These results are extended in Sec. III to p
nar systems using an approximate model reduction appro
as well as a linear analysis, and they are verified by typ
simulations. In a future publication, we will apply this know
how to the stabilization of a planar front in a cylindric
annular reactor in which a first-order Arrhenius reaction
curs. This will extend our previous one-dimensional study
this problem@13#.

II. ONE-DIMENSIONAL MODELS AND THEIR CONTROL

In @16#, we have analyzed three one-dimension
reactors—the adiabatic reactor, the cross-flow reactor,
the catalytic wire or ribbon—and showed that these th
situations can be further simplified to a formal model of t
form

yt2yzz1Vyz5P~y,u,l!,

V~yuo2yin!5yzuo , yzuL50, ~1a!

wherey is the state variable~typically the temperature!, u is
a nondiffusing~localized! variable~catalytic activity! that is
described below, andl is the control variable. The thre
situations described above differ in the absence or pres
of convection (V50 in the catalytic wire whileVÞ0 in the
06621
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two reactor models! and in the bistability features ofP(y)
50. The boundary conditions are the well-accepted Dan
werts conditions, which reduce to no-flux conditions in t
catalytic wire.

We refer to single-variable systems as those with a fix
activity (u51) while in a two-variables system the seco
variable~u! is slow ~« is the ratio of time scales! and non-
diffusing, and its kinetics is described by

u t5«Q~y,u!. ~1b!

The interaction of these two variables led to complex s
tiotemporal patterns that were investigated extensively by
as well as by others, for the three situations described h
Sheintuch and Nekhamkina@20# studied the adiabatic reac
tor, Nekhamkinaet al. @21# studied the cross-flow reacto
Numerous studies of the diffusion-reaction system, wh
represent many physical systems including the catalytic w
were summarized in monographs@18,19#. Sheintuch@22# and
Middya et al. @23# studied the catalytic wire under globa
control.

We are interested in controlling a stationary front@e.g.,
Fig. 1~a!#, the steady solution of Eq.~1!. Initially, we limit
the study to the case of a wide separation of time scales«
!1), for which we can assume theus(z) profile to be frozen
over short times. Model~1! exhibits front solutions that may
become unstable due to various interactions. Yet while a
lytical results exist for a single front in unbounded syste

FIG. 1. ~a! A typical 1D solution of the reaction-diffusion sys
tem @Eq. ~1!#; the instability stems from the anticlinal arrangeme
of y and u. ~b! Comparison of two approaches for the stabili
analysis of this system (V50,L520,0.1<g<0.8) subject to con-
trol ~2!. The first and second leading eigenvalues of the Jacob
matrices of the infinite-gain frozen-u reduced model@Eq. ~10a!# are
denoted by solid and broken lines while the eigenvalues of
finite-gain closed-loop frozen-u model (l* 50,y* 50) with gains
of k521 and220 are denoted by circles and points, respective
3-2
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with a polynomial source function@18,19#, the behavior of a
realistic bounded~finite-size! system with several fronts, an
arbitrary bistable kinetics, cannot be predicted analytically
most cases.

A. Model reduction and linear analysis

The simplest control is based on a single sensor, locate
z* near the desired front position, and controlling one of
model parameters~l!. The control law is of the form

l5l* 1k@y~z* !2y* #, ~2!

where y* is the set point. To find the necessary gain,
reduce the model to a presentation that follows the chang
front position, by approximating the front velocity~c!: We
envision a low state on the left and a high one on the ri
@Fig. 1~a!#, andc.0 implies expansion of the latter. Thu
the front position is described by

dZf

dt
52c~V,u,l!;V2cV50~u,l!. ~3!

The approximation above expresses the effect of convec
that can be shown to push the front in the flow direction@16#.
The front velocity is the resulting effect of convection a
front velocity in the absence of convection. We assume a
that changes inu are slow so thatu5us(z) is the frozen
steady-state solution. The typical steadyys and us profiles
are presented in Fig. 1~a!. Now the front is stationary for a
certainc* (us* ,l* )5V, that is, under conditions that the k
netic front counteract the convective force. We expand n

cV50~us ,l!5c* ~us* ,l* !1S ]c

]u D
f

@us~Zf !2us* #

1
]c

]l
~l2l* ! ~4!

to find the dependence of the front position on activity a
on the control variable. Sinceu is assumed to be frozen fo
the short perturbation times we consider, we can write

us~Zf !2us* 5S ]u

]zD
f

~z2Zs!5S ]u

]zD
f

~Zf2Zs!, ~5!

where the subscriptf denotes the front position. Moreove
gradients iny andu are related by

S ]u

]zD
f

52
Qy

Qu
S ]y

]zD
f

. ~6!

Similarly, the control effect can be expressed in a sim
form where we typically place the sensor (z* ) at the desired
steady front position (Zs),

l5k~y2y* !52S ]y

]zD
f

~Zf2Zs!, ~7!

and the front velocity forl* 50, V50, is described by
06621
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dZf

dt
5c~Zf !

5cV50~us* !2F S ]c

]u D
f

Qy

Qu
1k

]c

]lG S ]y

]zD
f

~Zf2Zs! ~8!

and the critical gain is readily approximated.
Example 1. For the simple cubicP(y,u,l)52y31y1u

1l, Q(y,u)5«(2gy2u), andV50, l* 50, for which an
analytical solution exists for a sufficiently long system, t
problem is reduced, after incorporating theQ(y,u) kinetics
into Eq. ~8! and noting that]c/]u5]c/]l, to k,2g
(]c/]u5]c/]l.0).

Testing the control in the limit of infinite~positive or
negative! gain ~k! amounts to pinning the solution so that

y~z* !5y* .

The ability of this controller to stabilize the system can
checked now by replacing the original problem with the fo
lowing two problems that describe the system upstream
downstream of the front:

yt2yzz1Vyz5P„y,us~z!,l* …,

yzuz505V~yuz502yin!, yuz* 5y* ; ~9a!

yt2yzz1Vyz5P„y,us~z!,l* …, yuz* 5y* , yzuz5L50.
~9b!

To find the eigenvalues, linearize the problem within ea
domain,

ȳt2 ȳzz1Vȳz5Py„yz~z!,us~z!,l* …ȳ,

and use spectral methods to expandȳ5y2ys
5(alf i( ipz/L1z0), where ys5ys(z) is the steady solu-
tion, ȳ5y(z,t)2ys is the deviation, and the wave numberi
andz0 are determined by the boundary conditions, to conv
the problem into a set of linear ODE’s.

Example 1a. For the simple kinetics~andV50) described
in example 1, the solution exhibits inversion symme
around midpoint and it is sufficient to studyyt2yzz52y3

1y1us(z) within the half-domain 0,z,L/2, subject to
yzuz5050, yuz5L/250. Approximation of the linearized sys
tem by the spectral methods leads to a set of ODE’s,

at5Aa,

Ai j 52
~2i 21!2p2

L2 d i j 1^~23ys
211!f i ,f j&,

i , j 51,2, . . . , ~10a!

where d i j 51 when i 5 j and d i j 50 otherwise. Thef i ’s
eigenfunctions are calculated from the linearized probl
ȳt2 ȳzz5(23ys

211)ȳ, which leads to eigenvalues an
eigenfunctions of the problem,fzz(z)52lf(z), fz(0)
5f(L/2)50,
3-3
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l i5
~2i 21!2p2

L2 ,

f i~z!5
2

AL
cosS ~2i 21!pz

L D , i 51,2, . . . ~10b!

~see the Appendix!.
For evaluatingAi j we can approximate the steady-sta

solution of PDE~1! @2yszz52ys
31ys(12g)# with the ana-

lytical results of a long system:ys5A12g tanh@(z
2zf)A0.5(12g)# obtained by rescaling of the single
variable problem,2yszz52ys

31ys , yszu0,L50, which in
turn has a well-known solution~for an infinitely long system!
ys5tanh(z/&) @19#. By integrating Eq.~10a! with zf5L/2,
we obtain

Aii 512
6b2

L H L

2
2
&

b
tanhS bL

2&
D

14&bS 11e20.5L&b

2b214l i
22

11e2L&b

8b214l i
D J , ~11a!

Ai j 52
24&b3

L S 11e20.5L&b

2b214q1
22

11e2L&b

8b214q1

1
11e20.5L&b

2b214q2
22

11e2L&b

8b214q2
D , ~11b!

where b5A12g, q15( i 1 j 21)2p2/L2, and q25( i
2 j )2p2/L2 ~see the Appendix for derivation and the gene
formula for Ali ,Ai j whenzfÞL/2).

The comparison of two approaches, both assumin
frozen-u profile either with an infinite or with a finite gain, i
presented in Fig. 1~b!: The leading eigenvalues of matrixA
~solid and broken lines, truncated orderN514) from Eq.
~10a!, where we assumed an infinite gain and a frozeu
profile @Fig. 1~a!#, are compared for variousg values with
those of the Jacobian matrix of the lumped model of PD
~1!, again with a frozen-u profile, controlled by l
5k@y(z* )2y* # @Eq. ~2! with l* 50, y* 50] with a gain of
k521 ~circles! or k5220 ~points!. Figure 1~b! shows the
similarity of slow dynamics of these models when the gain
sufficiently high ~practically uku.1). This supports the ad
equacy of the reduced model~9! and its efficiency for analy-
sis of the closed-loop system with pinning control.

Both models demonstrate the inefficiency of pinning co
trol for g. 2

3 . That results from the effect ofg on the phase
plane: Forg, 2

3 , the systemP5Q50 exhibits bistability
~two stable states! and the distributed system exhibits a fro
that separates them. Forg.1 and«!1, the system exhibits
a unique unstable state surrounded by a limit cycle while
2
3 ,g,1 the system exhibits bistability but the stability d
pends on« ~see the detailed analysis in@15#!. To verify these
conditions, note that the steady states of the ODE sys
yt52y31y1u, u t5«(2gy2u) areys56A12g and the
corresponding eigenvalues are approximatelym1,252(2
06621
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23g1«)/26A(223g1«)2/42(222g)«. Thus, for small
« the eigenvalues arem1522(12g)«/(223g1«), m2
52(223g1«)2m1 .

Example 2. For V.0 andP(y,us ,l)52(y221)(y2a)
1us1l, we can still find an analytical solution for the fron
velocity. To render the front stationary we seta52V/&.
Such a source function admits an analytical steady-state
lution in an infinitely long system,ys5A12g tanh@(z
2zf)A0.5(12g)#. To study the effect of infinite gain, we
need to solve the two domains~9a! and ~9b! ~with the front
in the center! for the upstream and downstream sectio
which become forl* 50, z* 5L/2, andy* 50,

yt2yzz1Vyz52~y221!~y2a!1us~z!,

yzuz505V~yuz502yin!, yuz5L/250; ~12a!

yt2yzz1Vyz52~y221!~y2a!1us~z!,

yuz5L/250, yzuz5L50. ~12b!

The linearized problem of the upstream section~12a! ȳt

2 ȳzz1Vȳz5(23ys
21112ays) ȳ leads to the eigenvalue

l i and eigenfunctionsf i(z) @adjoint eigenfunctionsf i
a(z)]

of the linear operator,fzz(z)2Vfz(z)52lf(z), subject to
fz(0)5Vf(0), f(L/2)50,

l i5s21
V2

4
,

f i~z!5Q ie
0.5VzS cos~s iz!1

V

2s i
sin~s iz! D ,

f i
a~z!5f i~z!e2Vz ~13!

with s i , i 51,2, . . . satisfying the equation 2s i5
2Vtg(s iL/2), Q i5^@cos(siz)1(V/2s i)sin(siz)#

2&20.5 ~see
the Appendix for derivation!.

The approximation of the linearized system by spec
methods leads to the following linear system in the dom
0,z,L/2:

at5Aa,

Ai j 52S s l1
V2

4 D d i j 1^~23ys
212ays11!f if j

a&,

i , j 51,2, . . . . ~14!

The downstream section is described by Eq.~12b! and yields
the same eigenvalues and eigenfunctions as in Eq.~13! ~see
the Appendix!.

Figure 2 compares the analysis of three approaches
various g values ~and L520, V50.1). The infinite-gain
frozen-u approach («50) yields a leading eigenvalue@of
matrix A, Eq. ~14!# denoted by a solid line. The finite-gain
frozen-u approach (l* 50, y* 50, k5220, truncation order
N514) yields the leading eigenvalue denoted by points, a
the full model that accounts for varyingu («50.1) yields the
3-4
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dashed-dotted line: As in Fig. 1~b!, the frozen-u models with
finite or infinite k yield similar results. The full model pre
dicts that the largest eigenvalue of the short system is n
tive for g,0.6 as expected from the analysis of the hom
geneous state@g,(21«)/3, see example 1~b!#. All these
models demonstrate that the pinning control is effective
g,g* (V) ~Fig. 2!.

III. PINNING PLANAR FRONTS

The structure of this section is as follows: Model redu
tion and various control strategies are analyzed in Sec. II
Linear analysis and control design are outlined in Secs. I
and III C.

A. Model reduction and control strategies

Consider a reaction-diffusion problem in the~z,r! rectan-
gular domain of lengthL and widthR ~e.g., see Fig. 3!,

yt2yzz2yrr 52y31y1u1l, ~15a!

u t5«~2gy2u! ~15b!

subject to no-flux boundary conditions:

yz~0,r !50, yz~L,r !50,

yr~z,0!50, yr~z,R!50. ~15c!

We want to stabilize a 1D front in the middle~i.e., at z
5L/2) of this 2D domain. One instability stems from th
same reason as in the 1D problem, namely the anticl
arrangement of the front and the slow variable@Fig. 1~a!#.
However, while a single actuator can arrest the front in
1D system, here the front, in a sufficiently wide system, m

FIG. 2. Comparison of three approaches for the stability an
sis of the 1D reaction-convection-diffusion system@Eq. ~1!, V
50.1,L520,0.1<g<0.8] subject to control~2!: The leading eigen-
value of the Jacobian matrix of the infinite-gain frozen-u reduced
model @Eq. ~14!# is denoted by the solid line while the leadin
eigenvalue of the finite-gain closed-loop frozen-u model is denoted
by points and that of the full («50.1) model (l* 50,y* 50,k
5220) is marked by a dashed-dotted line.
06621
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undergo symmetry breaking so that in part of it the upp
state expands while in the other part the lower state pro
gates~see Fig. 3!.

We begin the analysis with the case«→0 so that u
5us(z) can be assumed to be the frozen steady state.
velocity of a planar front now depends on its curvature a
with K!1 it is @19#

c5c`2DK, K5 f 9/~11 f 82!3/2, ~16!

wherec is the velocity in the direction perpendicular to th
front, which is described by a certain curveZf2Zs5 f (r ),
andc` is the front velocity of a planar front in a large sy
tem;D is the diffusivity, which in our case is scaled into th
length scale~i.e., D51).

Now, consider perturbations of stationary fronts in the
dial ~r! direction and various control approaches.

~i! Line actuator. If we pin the whole front at the front
line Zf(r )5L/2 to y5y* , then the problem is reduced to it
one-dimensional analog as described above. That may no
a practical solution and we should look for pinning the fro
at few points along the front line.

~ii ! Point actuator. If we place the sensor at the center
the domainy* 5y(L/2,R/2) and use a simple uniform plana
actuator,l5k(y2y* ), then for small deviations~the curva-
ture for small deviations isK5 f 9) we have

2
dZf

dt
52

d f~r !

dt
5c„f ~r !…

52
Qy

Qu
S ]c

]u D
f
S ]y

]zD
f

f ~r !2
]2f

]r 22
]c

]l S ]y

]zD
f

k fS R

2 D .

~17a!

-

FIG. 3. Time evolution of the front liney(L/2,r ) ~a! and of the
planar front solution~b! of the closed-loop system~15! subject to
the control law l5220@y(z* ,r * ,t)2ys(z* ,r * )# with a single
space-independent actuator located at the domain center (z* 5L/2,
r * 5R/2; L520, R57, «50.1, andg50.45).
3-5
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~iii ! Finding critical R. With a sufficiently large gain, we
can pin the front at its center but that may not be sufficien
a wide system. We should consider fronts that admit no-fl
boundary conditions, i.e.,f ;cos(npr/R)1d, n51,2, . . . ,
whered is a certain constant value. The most unstable p
turbation is that withn51, and therefore

2
dZf

dt
52

d f~r !

dt
5c„f ~r !…52

Qy

Qu
S ]c

]u D
f
S ]y

]zD
f

f ~r !2
]2f

]r 2 .

~17b!

Setting f ;an(t)cos(npr/R)1d, we can approximate the e
genvalues of this problem as

mn5gcu f yz f2~np/R!2, cu f5~]c/]u! f ~18!

and we find that forR larger than a critical value this ap
proach cannot assure the stability of this state. For exam
the front velocityc` of Eq. ~15a! with the frozen profileu
5us(z) is c`5(y11y222yi) @19#, wherey1 , y2 , yi are
roots of2y31y50. Calculatingc` at the front position as
c` f>3(us1l)/& ~see details in @14#! we obtain cu f
>3/&. The derivativeyz f may be evaluated by differentia
tion of the analytical steady-state solution,ys

5A12g tanh@(z2Zf)A(12g)/2# as yz f5(12g)/&. Then
the leading eigenvalue of the problem~17b! with g50.45 is
m150.372(p/R)2 from which we calculate the critical

Rcr55.16.

This Rcr is a good approximation for the value obtained b
low by other methods for the full PDE’s~15! with «50.1.

~iv! Two actuators. Now, for R.Rcr we have to turn to a
control based on two sensors and two actuators: From
nature of the unstable perturbations which admit no-fl
boundary conditions, we should impose a control that in
model reduction appears in the form cos(npr/R)1d, whered
is a certain constant value; i.e., in the original system
simplest two-actuator control is of the form

l5k1y11k2y2 cos~pr /R!, ~19!

whereyi5y(r i) is measured at the points (L/2,r i). Controll
in Eq. ~19! is determined from the perturbations ofy at two
sensors located at (L/2,r 1), (L/2,r 2). This control responds
to deviations in the front position becausey(L/2,r i)
>2 f (r i), wheref (r i)5(Zf2Zs)ur i

, i 51,2. To study the ef-
fectiveness of this actuator, substitute control~19! into Eq.
~17a! to find a term like (]c/]l)(]y/]z)(l2l* ) instead of
k f(R/2). We obtain that with a certaink1 , the eigenvalues o
this problem are approximated bymn5gcu f yz f2(np/R)2

2k2y2 . They can be shifted to the negative domain by
sufficiently large gaink2 .

~v! Many actuators. Obviously, with increasing width o
the system we will have to employ more sensors and m
actuators. In that case we suggest using several senso
cated along the front at preset positions (z,r )5(L/2,r d), d
51, . . . ,h and apply a general feedback control law of t
form
06621
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l5l* 1k(
d51

h

@y~L/2,r d ,t !2yd* #cd~z,r !, ~20!

where y(L/2,r d ,t)2yd* are deviations of the sensors fro
the set pointsyd* 5y* (L/2,r d); cd(z,r ) are some space
dependent functions that may imitate the eigenfunctions.
design of control~20! we apply below the general approac
based on Liapunov’s linearization method and the advan
linear system theory@24#. This approach uses a linearize
lumping model of PDE’s and is best suitable for a systema
computer-aided search of the regulator form. Moreover,
method may be applied to PDE’s~1! without the analysis
limiting to the time-scale separation and to the forms of p
turbation. We will seek control~20! with the simplest space
independent or space-dependent actuator functionscd(z,r ).

Below we consider in detail the theoretical basis for t
design of linear feedback control~20!.

B. Linear analysis

Linearizing system~15! for l50 around ys5ys(z,r ),
us5us(z,r ), the steady-state solution, we find

ȳt2 ȳzz2 ȳrr 5~23ys
211!ȳ1 ū1l, ~21a!

ū t52«g ȳ2«ū. ~21b!

We use the Galerkin approach for lumping these equati
with l from Eq. ~20! by expanding the deviationsȳ(z,r ,t),
ū(z,r ,t), and ȳ(z* ,r d ,t)5y(z* ,r d ,t)2ys(z* ,r d) as

ȳ~z,r ,t !5(
e

ae~ t !fe~z,r !,

ȳ~z* ,r d ,t !5(
e

ae~ t !fe~z* ,r d!,

ū~z,t !5(
e

be~ t !fe~z,r !, ~22!

wherez* 5L/2. The orthonormal functionsfe(z,r ) are the
eigenfunctions of the problem,

fzz~z,r !1f rr ~z,r !52lf~z,r !,

fz~0,r !5fz~L,r !5f r~z,0!5f r~z,R!50 ~23!

with the eigenvalues

le~ i j !5F ~ i 21!2

L2 1
~ j 21!2

R2 Gp2 ~24a!

and the eigenfunctions

fe~ i j !~z,r !5
r

ALR
cos

~ i 21!pz

L
cos

~ j 21!pr

R
,

e5e~ i j !51,2, . . . , ~24b!
3-6
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wherer51 when i 5 j 51, r52 when i, j .1, andr5&
when i 51, j .1 or j 51, i .1 @see the Appendix for a deri
vation of Eq.~24!#.

Approximation by spectral methods of Eqs.~21a!, ~21b!,
and ~20! with l* 50 and set pointsyd* 5ys(z* ,r d) leads to
the infinite system of ODE’s,

ȧe52leae1(
m

Jemam1be

1k(
d51

h E
0

LE
0

R

cd~z,r !(
f

aff f ~kl !~z* ,r d!

3fe~kl !~z,r !dz dr, ~25!

ḃe52«~gae1be!, ~26!

where

Jem5E
0

LE
0

R

~23ys
211!fm~ i j !fe~kl !dz dr,

e,m51,2, . . . . ~27!

Let us evaluate the last sum in Eq.~25!. Denoting

hd f5f f~z* ,r d!, ~28!

we can present a term of this sum as

E
0

LE
0

R

cd~z,r !(
f

aff f ~kl !~z* ,r d!fe~kl !~z,r !dz dr

5E
0

LE
0

R

cd~z,r !fe~kl !~z,r !dz dr(
f

afhd f

and rewrite Eq.~25! with the notation

bed5E
0

LE
0

R

cd~z,r !fe~kl !~z,r !dz dr ~29!

as follows:

ȧe52leae1(
m

Jemam1be1k(
d51

h

bed(
f

afhd f ,

e, f 51,2, . . . . ~30!

Closed-loop ODE’s~30! and ~26! may be presented in th
usual vector-matrix form

F ȧ

ḃG5F2L1J I

2«gI 2«I G Fa
bG1kF b

OG@H O#Fa
bG

or as an open-loop system withh-dimensional inputv and
outputw,

F ȧ

ḃG5F2L1J I

2«gI 2«I G Fa
bG1F b

OGv, ~31!
06621
w5Ha ~32!

closed by a high gain output feedback control

v5kIhw, ~33!

where a(t)5@ae#, b(t)5@be# are the infinite-dimensiona
vectors (e51,2, . . . ); v and w are finite-dimensional
h-vectors, the matrixb5@bed# hash infinite-dimension col-
umns (e51,2, . . . ;d51, . . . ,h) and the matrixH5@hd f#
hash infinite-dimension rows (d51, . . . ,h, f 51,2, . . . ); I h
is an unity h3h matrix; L5diag(l1,l2, . . . ), I
5diag(1,1, . . . ), J5@Jem#, e,m51,2, . . . are infinite-
dimensional matrices.

Let us study control system~31! with output ~32!. The
problem can be stated as follows.

Problem. For the linearized infinite-dimensional OD
system~31! and ~32! it is necessary to find ahigh gain ~k!
output feedback control~33!, constructed by using inputv
and outputw of minimal dimensions, such that the close
loop system be asymptotically stable.

The design of the control law uses a finite-dimensio
truncated version of ODEs~31! and ~32!. The evaluation of
order N of the truncated ODE system consists of two ma
stages: First we evaluateM @M5max(i,j), Eqs. ~24a! and
~24b!# which defines the minimal threshold for basic eige
functions~22! in the z and r directions: For assigned valu
M52,3, . . . we calculatem5M2 eigenvaluesle( i j ) @Eq.
~24a!# and eigenfunctionsfe( i j )(z,r ) @Eq. ~24b!#, e
51,2, . . . ,m of the linear operator of PDE’s~15!, order the
eigenfunctions in increasing values of the relatedle( i j ) , and
then calculate the leading eigenvalues of the 2m32m dy-
namics matrices of Eq.~31!. M coincides with the minimal
one that ensures the convergence of the leading eigenva
with desirable accuracy. In the next stage we need to e
mate the truncated orderN as the minimal value ofe @the
number of ordered eigenfunctionsfe( i j )(z,r ) for assigned
M# which guarantees the desired accuracy of the approxi
tion. Analysis of the leading eigenvalues for different syste
width R showed thatM;10 is sufficient forN evaluations
for the conditions defined below. The results of evolutionN

TABLE I. Evolution of the truncated orderN versus R (L
520).

R 1,2 3 4,5 6 7 8 9 10

N 9 14 16 22 23 27 29 30

TABLE II. Number of unstable eigenvalues in an open-lo
system for differentR (L520).

R
Number of

positive eigenvalues

0,R<5.6 2
5.6,R<10 4

R.10 >6
3-7
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versusR for assignedM510 ~Table I, L520, «50.1, g
50.45) show thatN grows about linearly withR.

The stability analysis of the open-loop system forM
510 shows two real unstable eigenvalues of Eq.~31!
~;0.328,;0!, which are identical to those of a narrow sy
tem and two complex eigenvalues with a real part that
comes positive forR>5.6 @Fig. 4~a!, parameters as in Tabl
I#. Recall that this was approximated by the critical val
predicted in Eq.~18!. The number of unstable eigenvalu
increases forR.10 ~see Table II!.

C. Control design based on the linearized lumped model

Control design implies the determination of the minim
number of actuators to be employed, their spatial form,
the location of the corresponding sensors that will assure

FIG. 4. The stability analysis of an open loop~a! and a closed
loop system with one~b! or two ~c! actuators: ~a! The effect of the
domain width ~R! on the leading eigenvalues@l1 ~asterisks!, l2

~pluses!, and real part ofl3 ,l4 ~circles!# of the open-loop system
@truncated ODE system~31!#; ~b! the effect of the domain width on
the leading eigenvalues~real part, denoted by circles! of the closed-
loop system@truncated ODE system~31! and~32!# with a high gain
(k5220) control ~34! using a uniform actuator with a cente
positioned sensor~other parameters as in Fig. 3,M510); ~c! effect
of two actuators control@Eq. ~35!, z* 5L/2,r 15R/2,r 250, 7<R
<10] on leading eigenvalues of the closed-loop truncated O
system~31! and ~32!. Other parameters are as in Fig. 3.
06621
-

l
d
e

linear stability of the planar front. We start with a sing
simple ~space-independent! actuator with a centrally posi
tioned sensor. Assuming intuitively, as suggested by
model-reduction approach, that it is indeed the simplest s
sor. When that fails in wide domains we demonstrate
methodological design of a two-actuator control. The p
posed approach of control design uses the concepts of fi
@24–26# and infinite zeros@27# of a linear multidimensional
system~see@28,29# for details!.

Simple single actuator control. We start by analyzing the
effectiveness of the simplest control law: a single spa
independent actuator@i.e., Eq. ~20a! with h51, c1(z,r )
51]

l5k@y~z* ,r 1 ,t !5ys* #, ~34!

where ys* 5ys(z* ,r 1).1 The spectral representation of th
closed-loop PDE’s~15a!, ~15b!, and ~34! is a single-input
single-output ODE’s~31! and ~32! with a column vectorb
5@b11,0,0, . . . #T (b115ALR) and a row vectorH5h
5@h11,h12, . . . #. We begin the analysis for an actuator th
is situated at the domain center (z* 5L/2,r 15R/2). The evo-
lution of the leading eigenvalues with changingR in an
open-loop and closed-loop (k5220) system shows@Figs.
4~a! and 4~b!# that the high feedback influences only the tw
most positive leading eigenvalues (l1;0.328,l2;0) of the
open-loop system while the next-leading~and complex! ei-
genvaluesl3 ,l4 possess negative real parts for 0,R,5.6
and positive real parts forR>5.6. The critical width for the
effectiveness of a simple actuatorRcr;5.5 is in fair agree-
ment with the model reduction prediction~see Sec. III A!.
The transition with increasingR is through a Hopf bifurca-
tion, and simulations of the original system~15! with control
~34! verify this by emergence of damped and undamped
cillations for R below and above this value@Figs. 5~a! and
5~b!; R55.2,5.6]. Figure 5 presents cross sections of
solution atL/2 ~first column!, temporal behavior of the cen
ter (L/2,R/2) position ~second column!, and the gray-scale
plots of the state atR/2 ~third column! andL/2 ~fourth col-
umn!.

Two-actuator control. It follows from Eq. ~20! that while
the form of the output matrixH is defined by the sensor
number h and their positions@Eq. ~28!#, the form of the
actuator functionscd(z,r ) influences the structure of the ma
trix b @Eq. ~29!#. Therefore, the general strategy of th
method is based on assigningh51,2, . . . preset actuator
positions (z,r )5(L/2,r d), d51, . . . ,h, by successively
adding new corresponding rows in theh3N output matrixH
and searching for the form of additional rows of theN3h
matrix b such that the newb ensures stability of the closed
loop ODE’s~31!,~32! with a high gain control~33!. The sta-
bility analysis may be fulfilled by directly calculating th
leading eigenvalues of the above-mentioned closed-loop
tem versus gain coefficientk. But we use the advanced linea
system theory to replace this procedure by the analysis

1We propose that the set pointy* coincides with the desired
steady-state valueys* of this problem.

E

3-8
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FIG. 5. ~a!,~b! Testing the effectiveness of control~34! with one space-independent actuator for system~15! of different widths: R
55.2 ~a!, R55.6 ~b!. The figures present initial~dashed line! and final~solid line! y profiles in ther direction ~column 1, insets are initial
and final profiles in thez direction!, the deviation ofy from ys in the center point (L/2,R/2) ~column 2!, and gray-scale plots in the plane
~t, z! at r 5R/2 and in~t, r! at z5L/2 ~columns 3 and 4!. Initial perturbation in ther direction is20.01 cos(pr/R); the sensor is positioned
at the center (L520,«50.1,g50.45,k5220).
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finite zeros and infinite zeros of open-loop system~31! and
~32! applying the known property of a closed-loop line
system with a high gain feedback~see@24,27#!: as the feed-
back gain increases towards infinity, part of the closed-lo
eigenvalues remains finite and approaches the position w
is referred to as the finite system zeros while the remain
are located at the points at infinity and are known as infin
zeros. Therefore, we propose to seek the suitable matrixb by
the repeating calculations of the finite system zeros of op
loop ODE’s ~31! and ~32! with different input matrices and
finding one that ensures that the leading finite system z
are negative. Then we need to rearrange the sensor pos
in the r direction so that the infinite zeros tend to infini
along asymptotes with a negative real axis angle. This
guaranteed if the eigenvalues of theh3h matrix Hb have
real positive parts@27#.

For simplification of the search of the matrixb structure,
we may assign the eigenfunctions~24b! as actuator func-
tions, i.e.,cd(z,r );fe(z,r ), e51,2, . . . ; from the relation
between the form of the actuatorcd(z,r ) functions and the
structure of the matrixb @see Eq.~29!#, it follows that every
dth column of the matrixb will contain only nonzero ele-
mentbed .

Apply control of the form

l5k(
d51

2

@y~z* ,r d ,t !2ys* #cd~z,r ! ~35!

with one space-independent actuator@c1(z,r )51# and an-
other space-dependent one,c2(z,r );fe(z,r ), that is, an
eigenfunction from series~22! ordered in an increasing orde
of the appropriate eigenvalues.2 Let us introduce two sensor

2The first six ordered eigenfunctions for PDE’s~15! with L520,
R57, N523 are f1;1,f2;cos(pz/L), f3;cos(2pz/L), f4

;cos(pr/R), f5;cos(3pz/L), f6;cos(pz/L)cos(pr/R).
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at positions (z* 5L/2,r 1), (z* 5L/2,r 2) and calculate the 2
3N matrix H by formula ~28!. Then evaluating the system
zeros of series systems~31! and ~32! with output matrixH
and differentN32 matrices

b5F1/ALR 0 0 ¯

b21 b22 b23 ¯

GT

, ~36!

we may findb with the minimal number of nonzero elemen
b2i which ensures the stability of the appropriate closed-lo
system with a high gain. This matrixb contains nonzero
elementsb11Þ0, b2iÞ0 and the corresponding control~35!
has one space-independent and one space-dependent
tor. For example, for PDE’s~15! (L520, g50.45, «50.1,
R57, r 15R/2, r 25R) the matrixb with b24Þ0 conforms
to the ODE’s having leading zeros with negative real pa
~20.1024!. This b24 corresponds to the fourth eigenfunctio
f4;cos(pr/R) in the ordered series of eigenfunctions.

Consequently control~35! becomes

l5k$@y~z* ,r 1 ,t !2ys~z* ,r 1!#1@y~z* ,r 2 ,t !

2ys~z* ,r 2!#cos~pr /R!%, z* 5
L

2
. ~37!

Then we need to rearrange the sensor position in ther direc-
tion so that the eigenvalues of the 232 matrixHb are posi-
tive. As was noted before, this guarantees that the infi
zeros tend to infinity along asymptotes with a negative r
axis angle. For our example, we need to user i locations that
satisfy the inequalityr 1.r 2 . The relevant matrixHb with
r 15R andr 25R/2 has eigenvalues 0.081160.8761i . When
r 1,r 2 , the closed-loop high gain ODE’s~31!–~33! are un-
stable: the matrixHb has eigenvalues of 0.1161,20.1226.

The successful application of control~37! with r 15R and
r 25R/2 is demonstrated in Figs. 6~a! and 6~b!. Further com-
putation shows that it is able to stabilize the system withR
3-9
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FIG. 6. ~a!,~b! Testing the effectiveness of control~37! with one state-independent and one state-dependent actuator for system~15! of
width R57.Rcr . The figure presents initial~dashed line! and final~solid line! y profiles in ther direction~column 1, insets are initial and
final profiles in thez direction!, deviation ofy from ys at point (L/2,r 1) ~column 2!, gray-scale plot ofy in the planes~t, z! at r 5R/2 ~column
3!, and~t, r! at z5L/2 ~column 4!. Initial perturbation in ther direction is 0.01 cos(pr/R) in ~a! and20.01 sin(pr/R) in ~b!; sensor positions
are atz* 5L/2, r 15R, andr 25R/2. Other parameters as in Fig. 5.
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<10 @Fig. 4~c!#. Note that the structure of actuator~37! co-
incides with control law~19!, which was derived from the
reduced model.

We can use a similar approach for three or more actuat

IV. CONCLUSION

The stabilization of planar stationary fronts in a tw
dimensional rectangular domain, in which a diffusio
reaction systems occurs, is studied using a two-varia
model incorporating a fast and diffusing activator with a
proximate~polynomial! kinetics, for which some analytica
results are available, and a slow and localized inhibitor.
consider the simplest control strategy based on sen
placed at the front line position and measured deviati
from a local state, and actuators that are spatially uniform
space-dependent. Large gains imply pinning the solution
one or few points.

We apply two approaches for control design: an appro
mate model reduction to a form that follows the front po
tion while approximating the front velocity and assumi
wide separation of activator-inhibitor time scales, and lin
stability analysis. The same approaches were previously
plied by us for analysis of one-dimensional systems. T
approximate model reduction allows us to qualitatively a
lyze various control strategies and to predict the criti
width below which the control mode of the one-dimension
system is sufficient. These results are corroborated by lin
analysis of a truncated model with spectral methods re
sentation, using concepts of finite and infinite zeros of lin
multidimensional systems. We present a systematic con
design that determines the number of required sensors
actuators, their position, and their form.

In a future presentation we will show how this know-ho
can be implemented to problems with convection. To t
end we study the stabilization of planar fronts in a cylindric
annular reactor in which an oscillatory reaction occurs. U
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der the conditions studied the system exhibits a rotating
tern, but the incorporation of a simple pinning control, bas
on a sensor that measures the temperature at the front an
actuator that affects the feed concentration or the fluid ve
ity, is able to largely stabilize the front.
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APPENDIX

1. Derivation of Eqs. „10b… and „13…

The general solution of the problem

fzz~z!52lf~z! ~A1!

with the nonflux b.c. isf i(z)5Bi cos(Al iz) with l i5(2i
21)2p2/L2. The coefficientsBi are chosen so that eigen
functions be orthonormal; thusBi52/AL.

The eigenvalue problem

fzz2Vfz52lf, fz~z!uz505Vf~0!, f~z!uz5L/250
~A2!

is a non-self-adjoint problem with adjoint eigenfunctio
f i

a(z)5e2Vzf i(z). We use the substitution

f i~z!5e0.5Vzwi~z! ~A3!

and obtain the self-adjoint eigenvalue problem

wizz5S l i2
V2

4 Dwi50,
3-10
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wiz~z!uz505Vwi~0!/2,

wi~z!uz5L/250. ~A4!

The general solution of problem~A4! is

wi~z!5Ai sin~s iz!1Bi cos~s iz!,

wheres25l i2V2/4. Application of the boundary condition
yields Ai52Bictg(s iL/2), where s i obeys the equation
06621
2s i52Vtg(s iL/2). As a result, we obtain the general sol
tion of Eq. ~A4! as wi(z)5Bi@cos(siz)1(V/2s i)sin(siz)#.
Substitutingwi(z) in Eq. ~A3! and choosingBi to make the
eigenfunctions orthonormal to adjoint eigenfunctions, we o
tain Eq.~13!.

2. Derivation of Eqs. „11a… and „11b…

From the orthonormal property off i , we can expressAii

with b5A12g as follows:
ion for
Aii 5E
0

L/2

~23ys
211!f i

2dz5E
0

L/2

23ys
2f i

2dz115E
0

L/2

23b2 tanh2S b

&
~z2zf !D f i

2dz11.

Sincef i
2(z)54@cos2(qz)#/L52@11cos(2qz)#/L, q5(2i 21)p/L, we can rewrite the above expression as

Aii 512
6b2

L F E
0

L/2

tanh2S b

&
~z2zf !D dz1E

0

L/2

tanh2S b

&
~z2zf !D cos

2~2i 21!pz

L
dzG . ~A5!

The first integral in Eq.~A5! is calculated exactly. For evaluating the second integral, we use the approximate express
tanh: tanhy5sgn(y)$122 exp@22abs(y)#% @30#, which for y5z2zf,0 takes the simple form

tanh~z2zf !52112 exp@2~z2zf !#. ~A6!

Substituting Eq.~A6!, we can rewrite the last integral in Eq.~A5! in the form

E
0

L/2F24 expS 2b

&
~z2zf !D 14 expS 4b

&
~z2zf !D 11Gcos

2~2i 21!pz

L
dz ~A7!

and calculateAii ,

Aii 512
6b2

L H L

2
2
&

b S tanh
b~L/22zf !

&
1tanh

bzf

&
D 14&bS e&b~2zf1L/2!1e2&bzf

2b214l i
22

e2&b~2zf1L/2!1e22&bzf

8b214l i
D J .

~A8!

From the orthonormal property off i ,f j ( iÞ j ), we have

Ai j 5E
0

L/2

~23ys
211!f if jdz5E

0

L/2

23ys
2f if jdz5E

0

L/2

23b2 tanh2S b

&
~z2zf !D f if jdz.

Since

f i~z!f j~z!5
2

L S cos
2~ i 1 j 21!pz

L
1cos

2~ i 2 j !pz

L D
we can then rewriteAi j as

Ai j 52
6b2

L F E
0

L/2

tanh2S b

&
~z2zf !D cos

2pz

L
~ i 1 j 21!dz1E

0

L/2

tanh2S b

&
~z2zf !D cos

2pz~ i 2 j !

L
dzG .

For evaluating the integrals in the above expression we also use Eq.~A6!. With the notationq15( i 1 j 21)2p2/L2, q25( i
2 j )2p2/L2, we obtain
3-11
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Ai j 52
24&b3

L S e&b~2zf1L/2!1e2&bzf

2b214q1
22

e2&b~2zf1L/2!1e22&bzf

8b214q1
1

e&b~2zf1L/2!1e2&bzf

2b214q2
22

e2&b~2zf1L/2!1e22&bzf

8b214q2
D .

~A9!

Formulas~11a! and ~11b! follow from Eqs.~A8! and ~A9! with zf5L/2.

3. Derivation of Eq. „24…

Consider the general solution of the problem

fzz~z,r !1f rr ~z,r !52lf~z,r ! ~A10!

with the no-flux b.c.,

fz~0,r !5fz~L,r !50, f r~z,0!5f r~z,R!50. ~A11!

We use a separation of variables,f(z,r )5C(z)V(r ), to obtain two one-dimensional Sturm-Liuvill problems,

Czz~z!52mC~z!, Czuz5050, Czuz5L50; ~A12!

V rr ~r !52gV~r !, g5l2m, V r ur 5050, V r ur 5R50. ~A13!

Problems~A12! and ~A13! are similar to problems from@15# and have solutions for

m i5
~ i 21!2p2

L2 , C i~z!5
Bi

AL
cos

~ i 21!pz

L
, B151, Bi5&, i .1, ~A14a!

g j5
~ j 21!2p2

~R!2 , V j~r !5
Bj

AR
cos

~ j 21!pr

R
, B151, Bj5&, j .1, ~A14b!

where i , j 51,2, . . . . Using the equalityg j5l2m i and substituting the eigenfunctions from Eq.~A14! to f(z,r )
5C(z)V(r ), we obtain Eq.~24!.
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